About Me Blog
Dealing with heteroskedasticity; regression with robust standard errors using R Exporting editable plots from R to Powerpoint: making ggplot2 purrr with officer Forecasting my weight with R Getting data from pdfs using the pdftools package Going from a human readable Excel file to a machine-readable csv with {tidyxl} How Luxembourguish residents spend their time: a small {flexdashboard} demo using the Time use survey data Imputing missing values in parallel using {furrr} Missing data imputation and instrumental variables regression: the tidy approach The year of the GNU+Linux desktop is upon us: using user ratings of Steam Play compatibility to play around with regex and the tidyverse {pmice}, an experimental package for missing data imputation in parallel using {mice} and {furrr} Building formulae Functional peace of mind Get basic summary statistics for all the variables in a data frame Getting {sparklyr}, {h2o}, {rsparkling} to work together and some fun with bash Importing 30GB of data into R with sparklyr Introducing brotools It's lists all the way down It's lists all the way down, part 2: We need to go deeper Keep trying that api call with purrr::possibly() Lesser known dplyr 0.7* tricks Lesser known dplyr tricks Lesser known purrr tricks Make ggplot2 purrr Mapping a list of functions to a list of datasets with a list of columns as arguments Predicting job search by training a random forest on an unbalanced dataset Teaching the tidyverse to beginners Why I find tidyeval useful tidyr::spread() and dplyr::rename_at() in action Easy peasy STATA-like marginal effects with R Functional programming and unit testing for data munging with R available on Leanpub How to use jailbreakr My free book has a cover! Work on lists of datasets instead of individual datasets by using functional programming Method of Simulated Moments with R New website! Nonlinear Gmm with R - Example with a logistic regression Simulated Maximum Likelihood with R Bootstrapping standard errors for difference-in-differences estimation with R Careful with tryCatch Data frame columns as arguments to dplyr functions Export R output to a file I've started writing a 'book': Functional programming and unit testing for data munging with R Introduction to programming econometrics with R Merge a list of datasets together Object Oriented Programming with R: An example with a Cournot duopoly R, R with Atlas, R with OpenBLAS and Revolution R Open: which is fastest? Read a lot of datasets at once with R Unit testing with R Update to Introduction to programming econometrics with R Using R as a Computer Algebra System with Ryacas

Method of Simulated Moments with R

This document details section 12.5.6. Unobserved Heterogeneity Example. The original source code giving the results from table 12.3 are available from the authors' site here and written for Stata. This is an attempt to translate the code to R.

Consult the original source code if you want to read the authors' comments. If you want the R source code without all the commentaries, grab it here. This is not guaranteed to work, nor to be correct. It could set your pet on fire and/or eat your first born. Use at your own risk. I may, or may not, expand this example. Corrections, constructive criticism are welcome.

The model is the same as the one described here, so I won't go into details. The moment condition used is \( E[(y_i-\theta-u_i)]=0 \), so we can replace the expectation operator by the empirical mean:

\[ \dfrac{1}{N} \sum_{i=1}^N(y_i - \theta - E[u_i])=0 \]

Supposing that \( E[\overline{u}] \) is unknown, we can instead use the method of simulated moments for \( \theta \) defined by:

\[ \dfrac{1}{N} \sum_{i=1}^N(y_i - \theta - \dfrac{1}{S} \sum_{s=1}^S u_i^s)=0 \]

Import the data

You can consult the original source code to see how the authors simulated the data. To get the same results, and verify that I didn't make mistakes I prefer importing their data directly from their website.

data <- read.table("http://cameron.econ.ucdavis.edu/mmabook/mma12p2mslmsm.asc")
u <- data[, 1]
e <- data[, 2]
y <- data[, 3]
numobs <- length(u)
simreps <- 10000

Simulation

In the code below, we simulate the equation defined above:

usim <- -log(-log(runif(simreps)))
esim <- rnorm(simreps, 0, 1)

isim <- 0
while (isim < simreps) {

    usim = usim - log(-log(runif(simreps)))
    esim = esim + rnorm(simreps, 0, 1)

    isim = isim + 1

}

usimbar = usim/simreps
esimbar = esim/simreps

theta = y - usimbar - esimbar

theta_msm <- mean(theta)
approx_sterror <- sd(theta)/sqrt(simreps)

These steps yield the following results:

## Theta MSM= 1.188 Approximate Standard Error= 0.01676