About Me Blog
A tutorial on tidy cross-validation with R Analyzing NetHack data, part 1: What kills the players Analyzing NetHack data, part 2: What players kill the most Building a shiny app to explore historical newspapers: a step-by-step guide Classification of historical newspapers content: a tutorial combining R, bash and Vowpal Wabbit, part 1 Classification of historical newspapers content: a tutorial combining R, bash and Vowpal Wabbit, part 2 Curly-Curly, the successor of Bang-Bang Dealing with heteroskedasticity; regression with robust standard errors using R Easy time-series prediction with R: a tutorial with air traffic data from Lux Airport Exporting editable plots from R to Powerpoint: making ggplot2 purrr with officer Fast food, causality and R packages, part 1 Fast food, causality and R packages, part 2 For posterity: install {xml2} on GNU/Linux distros Forecasting my weight with R From webscraping data to releasing it as an R package to share with the world: a full tutorial with data from NetHack Get text from pdfs or images using OCR: a tutorial with {tesseract} and {magick} Getting data from pdfs using the pdftools package Getting the data from the Luxembourguish elections out of Excel Going from a human readable Excel file to a machine-readable csv with {tidyxl} Historical newspaper scraping with {tesseract} and R How Luxembourguish residents spend their time: a small {flexdashboard} demo using the Time use survey data Imputing missing values in parallel using {furrr} Intermittent demand, Croston and Die Hard Looking into 19th century ads from a Luxembourguish newspaper with R Making sense of the METS and ALTO XML standards Manipulate dates easily with {lubridate} Manipulating strings with the {stringr} package Maps with pie charts on top of each administrative division: an example with Luxembourg's elections data Missing data imputation and instrumental variables regression: the tidy approach Modern R with the tidyverse is available on Leanpub Objects types and some useful R functions for beginners Pivoting data frames just got easier thanks to `pivot_wide()` and `pivot_long()` R or Python? Why not both? Using Anaconda Python within R with {reticulate} Searching for the optimal hyper-parameters of an ARIMA model in parallel: the tidy gridsearch approach Some fun with {gganimate} Split-apply-combine for Maximum Likelihood Estimation of a linear model Statistical matching, or when one single data source is not enough The best way to visit Luxembourguish castles is doing data science + combinatorial optimization The never-ending editor war (?) The year of the GNU+Linux desktop is upon us: using user ratings of Steam Play compatibility to play around with regex and the tidyverse Using Data Science to read 10 years of Luxembourguish newspapers from the 19th century Using a genetic algorithm for the hyperparameter optimization of a SARIMA model Using cosine similarity to find matching documents: a tutorial using Seneca's letters to his friend Lucilius Using linear models with binary dependent variables, a simulation study Using the tidyverse for more than data manipulation: estimating pi with Monte Carlo methods What hyper-parameters are, and what to do with them; an illustration with ridge regression {disk.frame} is epic {pmice}, an experimental package for missing data imputation in parallel using {mice} and {furrr} Building formulae Functional peace of mind Get basic summary statistics for all the variables in a data frame Getting {sparklyr}, {h2o}, {rsparkling} to work together and some fun with bash Importing 30GB of data into R with sparklyr Introducing brotools It's lists all the way down It's lists all the way down, part 2: We need to go deeper Keep trying that api call with purrr::possibly() Lesser known dplyr 0.7* tricks Lesser known dplyr tricks Lesser known purrr tricks Make ggplot2 purrr Mapping a list of functions to a list of datasets with a list of columns as arguments Predicting job search by training a random forest on an unbalanced dataset Teaching the tidyverse to beginners Why I find tidyeval useful tidyr::spread() and dplyr::rename_at() in action Easy peasy STATA-like marginal effects with R Functional programming and unit testing for data munging with R available on Leanpub How to use jailbreakr My free book has a cover! Work on lists of datasets instead of individual datasets by using functional programming Method of Simulated Moments with R New website! Nonlinear Gmm with R - Example with a logistic regression Simulated Maximum Likelihood with R Bootstrapping standard errors for difference-in-differences estimation with R Careful with tryCatch Data frame columns as arguments to dplyr functions Export R output to a file I've started writing a 'book': Functional programming and unit testing for data munging with R Introduction to programming econometrics with R Merge a list of datasets together Object Oriented Programming with R: An example with a Cournot duopoly R, R with Atlas, R with OpenBLAS and Revolution R Open: which is fastest? Read a lot of datasets at once with R Unit testing with R Update to Introduction to programming econometrics with R Using R as a Computer Algebra System with Ryacas

What hyper-parameters are, and what to do with them; an illustration with ridge regression

This blog post is an excerpt of my ebook Modern R with the tidyverse that you can read for free here. This is taken from Chapter 7, which deals with statistical models. In the text below, I explain what hyper-parameters are, and as an example I run a ridge regression using the {glmnet} package. The book is still being written, so comments are more than welcome!


Hyper-parameters are parameters of the model that cannot be directly learned from the data. A linear regression does not have any hyper-parameters, but a random forest for instance has several. You might have heard of ridge regression, lasso and elasticnet. These are extensions to linear models that avoid over-fitting by penalizing large models. These extensions of the linear regression have hyper-parameters that the practitioner has to tune. There are several ways one can tune these parameters, for example, by doing a grid-search, or a random search over the grid or using more elaborate methods. To introduce hyper-parameters, let’s get to know ridge regression, also called Tikhonov regularization.

Ridge regression

Ridge regression is used when the data you are working with has a lot of explanatory variables, or when there is a risk that a simple linear regression might overfit to the training data, because, for example, your explanatory variables are collinear. If you are training a linear model and then you notice that it generalizes very badly to new, unseen data, it is very likely that the linear model you trained overfits the data. In this case, ridge regression might prove useful. The way ridge regression works might seem counter-intuititive; it boils down to fitting a worse model to the training data, but in return, this worse model will generalize better to new data.

The closed form solution of the ordinary least squares estimator is defined as:

\[ \widehat{\beta} = (X'X)^{-1}X'Y \]

where \(X\) is the design matrix (the matrix made up of the explanatory variables) and \(Y\) is the dependent variable. For ridge regression, this closed form solution changes a little bit:

\[ \widehat{\beta} = (X'X + \lambda I_p)^{-1}X'Y \]

where \(\lambda \in \mathbb{R}\) is an hyper-parameter and \(I_p\) is the identity matrix of dimension \(p\) (\(p\) is the number of explanatory variables). This formula above is the closed form solution to the following optimisation program:

\[ \sum_{i=1}^n \left(y_i - \sum_{j=1}^px_{ij}\beta_j\right)^2 \]

such that:

\[ \sum_{j=1}^p(\beta_j)^2 < c \]

for any strictly positive \(c\).

The glmnet() function from the {glmnet} package can be used for ridge regression, by setting the alpha argument to 0 (setting it to 1 would do LASSO, and setting it to a number between 0 and 1 would do elasticnet). But in order to compare linear regression and ridge regression, let me first divide the data into a training set and a testing set. I will be using the Housing data from the {Ecdat} package:

index <- 1:nrow(Housing)

train_index <- sample(index, round(0.90*nrow(Housing)), replace = FALSE)

test_index <- setdiff(index, train_index)

train_x <- Housing[train_index, ] %>% 

train_y <- Housing[train_index, ] %>% 

test_x <- Housing[test_index, ] %>% 

test_y <- Housing[test_index, ] %>% 

I do the train/test split this way, because glmnet() requires a design matrix as input, and not a formula. Design matrices can be created using the model.matrix() function:

train_matrix <- model.matrix(train_y ~ ., data = train_x)

test_matrix <- model.matrix(test_y ~ ., data = test_x)

To run an unpenalized linear regression, we can set the penalty to 0:

model_lm_ridge <- glmnet(y = train_y, x = train_matrix, alpha = 0, lambda = 0)

The model above provides the same result as a linear regression. Let’s compare the coefficients between the two:

## 13 x 1 sparse Matrix of class "dgCMatrix"
##                       s0
## (Intercept) -3247.030393
## (Intercept)     .       
## lotsize         3.520283
## bedrooms     1745.211187
## bathrms     14337.551325
## stories      6736.679470
## drivewayyes  5687.132236
## recroomyes   5701.831289
## fullbaseyes  5708.978557
## gashwyes    12508.524241
## aircoyes    12592.435621
## garagepl     4438.918373
## prefareayes  9085.172469

and now the coefficients of the linear regression (because I provide a design matrix, I have to use lm.fit() instead of lm() which requires a formula, not a matrix.)

coef(lm.fit(x = train_matrix, y = train_y))
##  (Intercept)      lotsize     bedrooms      bathrms      stories 
## -3245.146665     3.520357  1744.983863 14336.336858  6737.000410 
##  drivewayyes   recroomyes  fullbaseyes     gashwyes     aircoyes 
##  5686.394123  5700.210775  5709.493884 12509.005265 12592.367268 
##     garagepl  prefareayes 
##  4439.029607  9085.409155

as you can see, the coefficients are the same. Let’s compute the RMSE for the unpenalized linear regression:

preds_lm <- predict(model_lm_ridge, test_matrix)

rmse_lm <- sqrt(mean((preds_lm - test_y)^2))

The RMSE for the linear unpenalized regression is equal to 14463.08.

Let’s now run a ridge regression, with lambda equal to 100, and see if the RMSE is smaller:

model_ridge <- glmnet(y = train_y, x = train_matrix, alpha = 0, lambda = 100)

and let’s compute the RMSE again:

preds <- predict(model_ridge, test_matrix)

rmse <- sqrt(mean((preds - test_y)^2))

The RMSE for the linear penalized regression is equal to 14460.71, which is smaller than before. But which value of lambda gives smallest RMSE? To find out, one must run model over a grid of lambda values and pick the model with lowest RMSE. This procedure is available in the cv.glmnet() function, which picks the best value for lambda:

best_model <- cv.glmnet(train_matrix, train_y)
# lambda that minimises the MSE
## [1] 66.07936

According to cv.glmnet() the best value for lambda is 66.0793576. In the next section, we will implement cross validation ourselves, in order to find the hyper-parameters of a random forest.

Hope you enjoyed! If you found this blog post useful, you might want to follow me on twitter for blog post updates and buy me an espresso or paypal.me.

Buy me an EspressoBuy me an Espresso