About Me Blog
A tutorial on tidy cross-validation with R Analyzing NetHack data, part 1: What kills the players Analyzing NetHack data, part 2: What players kill the most Building a shiny app to explore historical newspapers: a step-by-step guide Classification of historical newspapers content: a tutorial combining R, bash and Vowpal Wabbit, part 1 Classification of historical newspapers content: a tutorial combining R, bash and Vowpal Wabbit, part 2 Dealing with heteroskedasticity; regression with robust standard errors using R Easy time-series prediction with R: a tutorial with air traffic data from Lux Airport Exporting editable plots from R to Powerpoint: making ggplot2 purrr with officer Fast food, causality and R packages, part 1 Fast food, causality and R packages, part 2 For posterity: install {xml2} on GNU/Linux distros Forecasting my weight with R From webscraping data to releasing it as an R package to share with the world: a full tutorial with data from NetHack Get text from pdfs or images using OCR: a tutorial with {tesseract} and {magick} Getting data from pdfs using the pdftools package Getting the data from the Luxembourguish elections out of Excel Going from a human readable Excel file to a machine-readable csv with {tidyxl} Historical newspaper scraping with {tesseract} and R How Luxembourguish residents spend their time: a small {flexdashboard} demo using the Time use survey data Imputing missing values in parallel using {furrr} Intermittent demand, Croston and Die Hard Looking into 19th century ads from a Luxembourguish newspaper with R Making sense of the METS and ALTO XML standards Manipulate dates easily with {lubridate} Manipulating strings with the {stringr} package Maps with pie charts on top of each administrative division: an example with Luxembourg's elections data Missing data imputation and instrumental variables regression: the tidy approach Objects types and some useful R functions for beginners Pivoting data frames just got easier thanks to `pivot_wide()` and `pivot_long()` R or Python? Why not both? Using Anaconda Python within R with {reticulate} Searching for the optimal hyper-parameters of an ARIMA model in parallel: the tidy gridsearch approach Some fun with {gganimate} The best way to visit Luxembourguish castles is doing data science + combinatorial optimization The never-ending editor war (?) The year of the GNU+Linux desktop is upon us: using user ratings of Steam Play compatibility to play around with regex and the tidyverse Using Data Science to read 10 years of Luxembourguish newspapers from the 19th century Using a genetic algorithm for the hyperparameter optimization of a SARIMA model Using cosine similarity to find matching documents: a tutorial using Seneca's letters to his friend Lucilius Using the tidyverse for more than data manipulation: estimating pi with Monte Carlo methods What hyper-parameters are, and what to do with them; an illustration with ridge regression {pmice}, an experimental package for missing data imputation in parallel using {mice} and {furrr} Building formulae Functional peace of mind Get basic summary statistics for all the variables in a data frame Getting {sparklyr}, {h2o}, {rsparkling} to work together and some fun with bash Importing 30GB of data into R with sparklyr Introducing brotools It's lists all the way down It's lists all the way down, part 2: We need to go deeper Keep trying that api call with purrr::possibly() Lesser known dplyr 0.7* tricks Lesser known dplyr tricks Lesser known purrr tricks Make ggplot2 purrr Mapping a list of functions to a list of datasets with a list of columns as arguments Predicting job search by training a random forest on an unbalanced dataset Teaching the tidyverse to beginners Why I find tidyeval useful tidyr::spread() and dplyr::rename_at() in action Easy peasy STATA-like marginal effects with R Functional programming and unit testing for data munging with R available on Leanpub How to use jailbreakr My free book has a cover! Work on lists of datasets instead of individual datasets by using functional programming Method of Simulated Moments with R New website! Nonlinear Gmm with R - Example with a logistic regression Simulated Maximum Likelihood with R Bootstrapping standard errors for difference-in-differences estimation with R Careful with tryCatch Data frame columns as arguments to dplyr functions Export R output to a file I've started writing a 'book': Functional programming and unit testing for data munging with R Introduction to programming econometrics with R Merge a list of datasets together Object Oriented Programming with R: An example with a Cournot duopoly R, R with Atlas, R with OpenBLAS and Revolution R Open: which is fastest? Read a lot of datasets at once with R Unit testing with R Update to Introduction to programming econometrics with R Using R as a Computer Algebra System with Ryacas

Using Data Science to read 10 years of Luxembourguish newspapers from the 19th century

I have been playing around with historical newspaper data (see here and here). I have extracted the data from the largest archive available, as described in the previous blog post, and now created a shiny dashboard where it is possible to visualize the most common words per article, as well as read a summary of each article. The summary was made using a method called textrank, using the {textrank} package, which extracts relevant sentences using the Pagerank (developed by Google) algorithm. You can read the scientific paper here for more info.

You can play around with the app by clicking here. In the next blog post, I will explain how I created the app, step by step. It’s going to be a long blog post!

Using the app, I noticed that some war happened around November 1860 in China, which turned out to be the Second Opium War. The war actually ended in October 1860, but apparently the news took several months to travel to Europe.

I also learned that already in the 1861, there was public transportation between some Luxembourguish villages, and French villages that were by the border (see the publication from the 17th of December 1861).

Let me know if you find about historical events using my app!

Hope you enjoyed! If you found this blog post useful, you might want to follow me on twitter for blog post updates and buy me an espresso or paypal.me.

Buy me an EspressoBuy me an Espresso